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Abstract

Sediment cores contain a long-timescale record of important climatalogical parameters. Even
common, expensive, time-consuming sampling methods cannot match the resolution of colour data
taken from digital photographs; but this data is noisy, in part due to bioturbation, drilling disturbance,
and sampling artifacts. This report presents a number of improvements to existing neural network
based methods of segmenting ‘undisturbed’ sediment from core images and applies the newly created
model to producing a filtered record of lightness over 160m ~ 1400ka. These improvements include
a novel morphological-process background removal, selection of an improved model architecture
(SegNet), and three methods for synthetic data augmentation. Data augmentation did not have a
significant effect on model performance. With all of these improvements, our new method produces an
Intersection-Over-Union of 0.53 + 0.09. This model likely underpredicts disturbance, despite selecting
26.6 % of the average core. This suggests a need for more training on a larger dataset to improve
the model, and a need for the development of stronger statistical tools to address the gaps created by
disturbance modifying the record. Cross-correlation analysis suggests that the resolution available in
undisturbed sediment may be lower than previous estimates. Tools for using this model and other
common stitching and averaging operations on digital photographs are presented in the coreclean
module for python, developed alongside this report.
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Figure 1: Location of site U1385 on the Iberian Margin.

1 Introduction

Marine sediment cores contain a high-resolution long timescale record of Earth’s climate history (Giosan
et al., 2002; Zhang et al., 2023). These records, especially those of the Iberian Margin are useful in
parametrising abrupt millenial scale events (Hodell et al., 2013; 2015), which provides training data for
future modelling. Spectrophotometry is used to obtain colour reflectance data, which displays correla-
tion with dust and carbonate content in this core. A higher resolution of reflectance data is theoretically
available from digital photographs of core sections (Chapman & Shackleton, 1998; Nederbragt et al.,
2006; Wu et al., 2022). Colour records tend to be noisy, partly due to bioturbation, detritus, drilling
disturbances and oxidation, collectively referred to as ‘disturbance’ throughout this report (Expedition
339 Scientists, 2013a). It is possible to segment this disturbance out of small patches of cores using
Convolutional Neural Networks (CNNs), but no effort has yet been made to apply this technique to
generating full core records free of bioturbation, nor has it been applied to the Iberian Margin (Fazekas
et al., 2017). Using shipboard images from IODP Expedition 399, site U1385 “Shackleton Site”, this
report aims to train a CNN to segment disturbance and generate an undisturbed record of sediment
colour variation. We also apply a number of improvements and optimisations in hopes of producing a
better model which can provide a more accurate record.

1.1 Background
1.1.1 Climate Relevance of Colour Data

The colour of sediment cores is useful for a number of paleoclimatological parameters; the lightness
(L) shows a very high correlation with the log of the Calcium-Titanium ratio (log Ca/Ti, Giosan et al.
(2002)), and has been interpreted as a proxy for the weight percent calcium carbonate (% CaCO3) in a
core (Gebregiorgis et al., 2020). This signal displays a signal tunable to precession which can help in
dating. Further, the log Ca/Ti mirrors sea surface temperature estimates from alkenones and planktonic
6180 (Hodell et al., 2015).

The carbonate signal is thought to be controlled by the input of detrital sediments, i.e. the percentage
of carbonate decreases when the flux of clay from riverine, atmospheric and margin slopes increases,
despite the biological input of carbonate remaining constant through time (Thomson et al., 1999). It is
suggested that the processes that control clay deposition are enhanced by a low sea level, and this in turn
is affected by Milankovitch frequencies, so that on orbital timescales, the driver of this variability is the
detrital input. On millenial timescales, however, it is likely that productivity affects the carbonate record.
During glacial stadials, cold sea surface temperatures (SSTs) are correlated with low bulk carbonate 680
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and more reworked nanofossil taxa, suggesting a drop in productivity. (Hodell et al., 2013; Incarbona
et al., 2010).

In either case, lightness and the carbonate record display a strong precession cycle, which has a
lag of about 2.8kyr compared to the modelled precession from radiocarbon. This means we can use
colour records to tune the timescale of sediment records, as well as providing a reflection of carbonate
productivity and therefore SST over stadials. Millenial variability in log Ca/Ti is persistent in this core,
(Hodell et al., 2015) so high resolution colour data may be able to provide more insight into the shape
and features of this variability.

Sediment redness (a*) can also be used as a paleoclimate proxy (Deaton & Balsam, 1991; Giosan
et al.,, 2002). In this core, there is a precession signal in a*, thought to be recording aeolian sourced
hematite from African dust. Hodell et al. (2013) suggest that minima in precession provoke aridity
on the Moroccan coast. Especially when insolation maxima lead to intense heating and low pressure,
this causes more dust deposition. This dust deposition is the dominant mechanism in Moroccan cores
(Bozzano et al., 2002), though the increased seasonal variability at precession minima likely release dust
availability. There is probably also some redness signal from fluvial transport increases of hematite due
to precipitation and erosion; which would be consistent with modelled predictions of increased runoff
at precession minima (Meijer & Tuenter, 2007), though this could also enhance African dust sources by
wet deposition mechanisms.

As with lightness, the redness signal also shows a strong in-phase precession signal, without a
signifcant lag, probably through the atmosphere. This is powerful for tuning, despite its attenuation in
the lower parts of the U1385 core (Hodell et al., 2013; 2015). Paleoclimate reconstruction using colour
will help us better understand the high resolution of the variability present in these cores, especially as
digital cameras should be able to provide higher resolution.

1.1.2 High Resolution Marine Sediment

The highest resolution of climate data currently available in a sediment core tends to be obtained by
X-ray Fluorescence (XRF) techniques, for example at 1cm resolution at Shackleton Site (Hodell et al,,
2015). The colour reflectance spectrophotometric measures on this core, for example, are only taken on
2cm intervals on the fresh core (Expedition 339 Scientists, 2013a). The work of Chapman & Shackleton
(1998) suggests that colour data contains information at the 1cm scale, and possibly even lower, from a
correlation-based analysis of spectrophotometer series over one core section; this resolution is obscured
by disturbance.

Some of the noise of a spectrophotometer is removed by averaging over the large window size;
theoretically, a well calibrated digital camera should be able to generate high quality colour data of a
higher resolution (Nederbragt et al., 2006) but obtaining higher resolutions is useless if noise dominates
the signal. Reflections from lighting and the presence of disturbance mean that high resolution records
from photographs show significant artifacts (Wu et al., 2022).

1.1.3 Processing Sediment Images

Disturbance can be visually identified in images of sediment cores and has been qualitiatively rated for
site U1385 (Expedition 339 Scientists, 2013b). Some work has been done to use digital image software
to manually remove bioturbation and quantify ichnological disturbance; this is time consuming and
prone to error, and the parameters selected are only valid for individual core sections or even specific
areas within cores (Dorador & Rodriguez-Tovar, 2014; 2016; 2018). Neural networks and deep learning
strategies may be able to select bioturbation more generally.

Fazekas et al. (2017) used a Fully Convolutional Network (FCN) architecture to segment drilling
disturbance and accessories from patches of linescanner images of cores from site U1308, and obtained
a modest Intersection-Over-Union (IOU) score of 30.19%, but showed that the majority of manually
identified artifacts were detectable by the FCN in these patches. This was attributed mostly to the model
selecting true phenomena as disturbance.

Since the development of FCNs for segmentation by Long et al. (2015), a number of new Convolu-
tional Neural Network (CNN) model architectures have been developed to decrease training time and
increase accuracy. Notably, UNet architectures, orginally developed for biomedical applications allow
the evaluation of larger images in faster time and with less labelled data.(Ronneberger et al., 2015).
Further, SegNet consumes less memory and provides similar accuracy with fewer training epochs
(Badrinarayanan et al., 2015).
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Additionally, since this previous work, the practice of data augmentation by applying transforms
to training images has become commonplace in machine learning, which allows training on smaller
datasets (Mumuni & Mumuni, 2022). This is particularly useful with difficult to obtain records such
as sediment cores; and can help prevent overfitting when working with these smaller datasets. Newer
pipelines for biomedical image segmentation often involve preprocessing steps that reduce the amount
of data to be processed by more sophisiticated and computationally intense techniques, which makes
segmentation a less-costly and more time-efficient task (Neha et al., 2024).

1.1.4 SiteU1385

Shackleton site (U1385, Fig 1), located on the Western Iberian Margin (37°34.285'N; 10°7.562'W) at
2585mbsl was drilled on the 25 November 2011 during IODP expedition 339 (Expedition 339 Scientists,
2013a). Centennial to millenial scale changes are present in records from this site due to the high
sedimentation rate of 10-20cm/ka. Historically, this site has had utility because of the unambiguous
link between both hemisphere’s ice core records. The upper water column and SST, recorded by
planktic formaminefera and alkenones, resembles the ice core records of Greenland, whereas the benthic
foraminefera produce 6'80 signals resembling Antarctic ice records, likely because of the ice volume
signal (Shackleton et al., 2000).

Cores recovered from IODP expeditions are given a numbering, consisting of the site, U1385, followed
by the hole letter, core number, and then the section, e.g. U1385A-01H-01. This convention will be used
throughout this report.

1.1.5 Core Disturbances

A number of secondary features obscure the primary colour signal in U1385 sediment (Fig. 2). The
major features which we labelled as disturbance for the purposes of this method are given below.
1. Drilling disturbance, broadly classified as one of seven types (Expedition 339 Scientists, 2013a):

a) Fall-in: Material from the top of the core falls downhole onto the cored surface.

b) Bowed: Bedding contacts are bent from horizontal due to core barrel pressure.

c) Flow-in: Coring slurry flows into the core around the undisturbed sediment.

d) Soupy or Mousselike: Water saturation has destroyed the structure of the sediment.

e) Biscuit: Sediments of higher stiffness are relatively undisturbed within soupy intervals.

f) Cracked or Fractured: Firm sediments are broken by the coring process but not displaced.

g) Fragmented or Brecciated: Sediments are pervasively broken into fragments and displaced.

2. Lithological Accesories:
h) Macrofossils: Mostly gastropod shell fragments, some sand-sized foraminefera.
i) Nodules and Concretions: Pyritised burrows and nodules.

3. Shipboard sampling artifacts, incurred by sampling and preparation of the core:

j) Slide Scratches: Using a microscope slide for cleaning the surface is common, but can cause
scrapes in the surface introducing reflections.

k) Headspace samples: Large chunks of sediment are removed from the bottom of core sections
for gas sampling.

1) Cutting scrapes: When halving the core, hard chunks can be dragged up the core, causing
gouges in the sediment.

4. Bioturbation, generally discrete burrows of four ichnotaxa (Rodriguez-Tovar & Dorador, 2014):

m) Thalassinoides: Large, mostly horizontal branched burrows, generally observed as 6-11mm
subcircular ovals with straight cylinders 22-43mm long. Produced mostly by decapods and
other crustaceans.

n) Chondrites: Secondary burrows, appearing as clusters of roughly circular holes 0.5-3mm in
diameter, mostly only in deep sections, usually considered an unknown creature’s feeding
structure.

0) Zoophycos: Helical structures, demonstrating horizontal lobes (spreiten structures). Often
comes in a series of stacked lamina, and have several interpretations,

p) Planolites: Smaller (2-7mm) subcircular horizontal burrows, interpreted as produced by soft
bodied invertebrates.

5. Further disturbance. There are a number of smaller or less frequently observed artifacts, including
smears, water pools, and less common ichnotaxa such as Phycosiphon, Scolica, Taenidium and
Paleophycus.
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Figure 2: Types of disturbance in U1385 cores. All images are U1385, specifically sections
(a) A-02H-1 (b) D-09H-1 (c) B-01H-3 (d) A-03H-1 (e) A-01H-1 (f) A-02H-2 (g) B-13H-7 (h) D-
11H-6 (i) E-14H-1 (j) A-01H-1 (k) A-02H-6 (1) A-04H-4 (m) E-04H-4 (n) E-04H-4 (0) E-13H-4
(p) E-13H-4.

1.2 Aims

By developing an improved method for disturbance segmentation, including pre-processing steps, se-
lecting an optimised model architecture, applying synthetic data augmentation and then post-processing
the obtained images into a colour record, this report aims to create a new method for processing core im-
ages to high resolution colour data, training on IODP Expedition 339’s U1385 cores. We aim to optimise
and improve the segmentation performance of CNNs for the task of marine sediment core segmentation
by evaluating various novel improvements including algorithmic morphological background removal,
pre-process thresholding, and three strategies of data augmentation. We will explore the resolution that
is possible to obtain from photo data, and discuss the implications for future use of sediment colour for
paleoclimate.
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2 Methods

2.1 Dataset

The primary dataset used for this work was the shipboard images of the Expedition 339 cores from
Shackleton sites. The cores in our dataset were extracted using the advanced piston corer (APC), which
provides less coring disturbance than the previously used extended core barrel (XCB) system when
used on soft sediment. Images were taken using the Section Half Imaging Logger (SHIL), at a resolution
of 20 lines at 500 dpi, providing us with a three channel (RGB) image in TIFF format (Expedition 339
Scientists, 2013a). Including core-catcher segments (small core sections from the end of drilling a hole),
this generated 503 images. The 65 core catcher images are approximately 25cm each; the remaining 438
are approximately 1.2-1.5m each, reaching a maximum depth of 162m below sea-level once corrected,
with an age estimated at 1422ka (Hodell et al., 2015).

Of these images, 12 were labelled manually and in detail to remove disturbance using GNU Image
Manipulation Program (GIMP). The alpha layer was used to contain the image mask (Fazekas et al., 2017).
There were four main passes in this labelling step. The first involved using a rectangle select tool to select
and mask the background and edges of the core; second, obvious drilling disturbance, oxidation, surface
disturbances, voids and other clear artifacts were removed. For identifying bioturbation, following
Dorador & Rodriguez-Tovar (2018), the colour of the image was modified using the levels tool, and
trace fossils were labelled as disturbance. Finally, the newly generated labels were referenced with
the original visual descriptions; in locations where the bioturbation index and disturbance from the
visual descriptions did not match our labels, our labels were updated (Expedition 339 Scientists, 2013b).
Labelling was a time-consuming step, and the labels are not perfect; especially, in sections where
bioturbation was questionable, no labels were applied to preserve the maximum amount of data.

All of the labelled cores from the composite section were excluded from the training set to avoid
overfitting. These were cut into patches of 128x128 (giving 27,222 patches or 18,239 after background
removal) and 256x256 (giving 4364 patches after background removal). These patch sizes were selected
because square images are easier to process with CNNs and 128 and 256 are commonly used sizes in
segmentation tasks (Fazekas et al., 2017; Ronneberger et al., 2015). Based on the work of Fazekas et al.
(2017), most models were trained using the 256x256 images, as this gives us patches of approximately
1.2cm, roughly the scale of most disturbance; using the 128x128 patches produced overfitting and
artifacting (Sec. 4.3.2). This dataset size is comparable to, but smaller than the commonly used Oxford
IIT Pets dataset, which has ~ 7400 images (Parkhi et al., 2012), though the quality of the labelled data
is likely lower, and there is more correlation between images, as they are taken from larger original core
sections.

2.2 Colour Transforms

Our data was provided in .tif format, with colour in a linear RGB space. RGB images measure the
intensity of red, green a blue light from 0 to 255, in a space originally designed to match the power
response of CRT displays to voltage changes; it measures the power to emit. This is not ideal for
quantifying colour changes as it lacks the property that linear distance in the space appears uniform; for
this reason much previous work in colour records uses the CIELAB space; measuring colour in lightness
(L*), and two chromaticity parameters (a*, redness and b*, yellowness) which capture the hue of the
pixel.

In order to transform linear RGB in our tiff images to CIELAB, we use Egs. 1 - 5, as implemented in
the openCV library (Bradski, 2000) using the XYZ colour space as an intermediate:

X| [0.412453 0.357580 0.180423] [R

Y| =10.212671 0.715160 0.072169] - |G 1)
Z| 0019334 0.119193 0.950227| |B

(] [ 116 f(Y)-16+06 |

a*| =500 (f(X) - f(Y))+ 06| for Y >0.008856 2)
o] [200- (F(Y) - f(2)) + 6]

NI 903.3-Y ]

a*| = [500- (f(X) - f(Y))+ 06| for Y <0.008856 (3)
o] [200- (F(Y) - f(2)) + 6]
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2.3 Preprocessing
2.3.1 Background Removal

Traditionally, and for our dataset, pixel locations have been used for background removal to generate a
clean cropped image (“LIMS Reports”, 2012). This is accurate enough for visual description of a single
set of core images. In this report, to accurately remove the background without including any of the
apparatus used to hold the core, we found that this method left voids on either side within the core
holder, and was not robust to varying sizes of cores, which means it cannot be used simply for the last
section of each core and the ’core-catcher’.

Therefore, we used Otsu’s method for asymmetric classes with multi-class improvement (Cai et
al., 2014; Kittler & Illingworth, 1986; Otsu, 1979) to identify colour clusters, and then performed a
morphological opening (Haralick, 1992) on a generated binary mask of ‘core-like’ colours, selecting
the largest rectangle. This method worked automatically in 97.6% of the core images with optimal
parameters, failing mostly on images where mud exceeded the top section of the core and so merged
with colour card. Other failure modes included overcropping on large cracks within the core meaning
that the lower end of the core was discarded.

A morphological opening consists of two stages, erosion and dilation. During erosion, a small shape
(kernel) of a given size is translated pixel by pixel across a large binary image. If all pixels under the
kernel are a 1, then the origin of the kernel (the center) is set to a 1. Dilation is similar, but applies
if any of the pixels under the kernel are 1. This means that erosion cuts away at shapes, whereas
dilation causes them to expand. Doing both in succession causes small features to dissapear, as erosion
will remove small shapes completely, and then dilation will restore the larger shapes. Using a square
kernel empahsises straight lines, ideal for our application where the desired output is a large rectangle
(Haralick, 1992).

Parameters for this method were determined by running an ensemble of methods (Tab. 1). Additional
dilation iterations were found to increase the percentage of the sections with the correct length under
this method; this reduces the number of large cracks unfilled, which are hard to segment from the
background, and therefore result in a partial crop of the core section.

In evaluating this ensemble, an automated procedure was run to detect background removal failure.
The colour card was detected by checking 20% of the leftmost column of the image is white. Overcrop-
ping (discarding too much of the core) was detected by comparing with the normal section lengths of
120cm and 150cm (to within 5%, as the sections are not all the same length) and then manual verification
of the flagged images. All core-catcher images and final sections of each core were manually verified.

Erosion Dilation Failure Mode

Kernel Iterations Kernel Iterations Cores Failed Accuracy (%) Undercropped Overcropped

5x5 2 5x5 2 32 93.6 0 32
5x5 3 5x5 3 41 91.8 0 41
5x5 3 5x5 5 13 97.4 0 13
5x5 3 5x5 7 12 97.6 6 6
5x5 3 5x5 8 12 97.6 12 0
5x5 3 5x5 10 36 92.8 36 0
5x5 10 5x5 10 133 73.5 0 133
10x10 3 10x10 3 69 86.2 0 69

Table 1: Optimal background removal parameters when tested over the full set of 503 core
sections.

This method is applicable to different sizes of cores, and various backgrounds and positioning. The
main constraint is the difference in colours of the background to the core; in this case, we assumed that
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Figure 3: Background removal on a representative core section (339_U1385A_01H_01).
Erosion was applied with a 5x5 square kernel and 3 iterations, and dilation with a 5x5
square kernel and 8 iterations. 10% tolerance was applied cross-core in the bounding
rectangle step.

the core lies in the middle of the lightness distribution (i.e. there are two other classes of lightness,
which surround the core), but this is configurable for various backgrounds.

Selection of largest inscribed rectangle within the generated contour was trialed by the algorithm
of Marzeh et al. (2019), but this was overly computationally intensive; instead adding a 10% extra crop
in the cross-core direction was found to quickly convert a bounding rectangle into a clean crop. Extra
cropping was not added in the down-core direction as this would add errors to depth from top of the
core. Pixel scaling was used to convert to length of cores. Significant gaps in the down-core direction
were not produced by this method. Overall steps taken in the background removal steps are shown in
Fig. 3.

In the rest of this work, background removal used the parameters of a 5x5 square kernel with 3
iterations of erosion and 7 iterations of dilation. Automatic detection of failures allowed for manual
intervention to correctly crop all images.

2.3.2 Thresholding

With the aim of reducing the use of machine learning parameters to encode simple features, we used a
simple thresholding method as used in (Blarr et al., 2024), which selects a class of low lightness values.
This method is justified by the prevalence of low lightness secondary features, specifically oxidation in
our dataset mostly manifests as dark patches, there are dark lithographic accessories in some sections,
bioturbation is sometimes associated with organic rich dark regions, and most notably, cracks make
dark shadows in the core image which can easily be removed. It is particularly useful in cracked cores
such as U1385-A-01H-01

The threshold was determined by Otsu’s method (Otsu, 1979), as we intend only to remove the
darkest regions from the core images. Otsu’s method generates a threshold that seperates two classes
with different means. Due to the patching of the dataset, applying an extra mask does not actually reduce
the required encoding in the model further than cropping. When comparing thresholded images to
our labels, they generated an Intersection-Over-Union (IOU) of 0.20 and an accuracy of 82.15%. This is
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Figure 4: Thresholding applied to two core sections. The histogram shows the distribution
of lightness and where the Otsu method places the threshold.

a neglible increase compared to the percentage of all pixels that are undisturbed (i.e. the accuracy of
predicting the whole image as undisturbed), 81%. This was not applied to the final model and colour
record generation, as in some sections it discarded too much valid sediment. A thresholded image is
presented for comparison in Fig. 4.

In some cases, thresholding is useful, especially in heavily cracked core sections such as U1385A-
01H-01, but in sections where the majority of the disturbance is bioturbation, such as U1385A-13H-4,
the selection of darker sections is quite arbritrary, and there are no significantly lighter classes which
can be selected with Otsu’s method reliably.

2.4 Convolutional Neural Networks

The convolutional neural net (CNN) framework is well established for image segmentation tasks in
biomedical, video processing, and other tasks (Zhao et al., 2024). Essentially, convolutions slide a small
patch of weights (a kernel) across a full image, taking the dot product at every step and putting the result
into anew ‘image’. By applying several different kernels and storing the results in different channels, this
can take spatial information and convert it into an encoding with smaller spatial dimension but greater
depth (compared to the original 3 RGB channels). This process is repeated several times, alongside
pooling which downsamples the image resolution. (Long et al., 2015)

Re-sampling upwards then produces a mask for the image in a matrix with K channels of the same
size as the original. Each of those channels represents the confidence (logits) of the model that the
image belongs to a certain class. By training, we iteratively update the transformations performed
in each convolutional layer to minimise a given metric. Taking a differentiable metric such as Cross
Entropy Loss, we can follow gradient descent in our parameter space to slowly tweak the values in each
convolutional kernel, until the network gives results close to our desirable output.

CNNs have severable desirable properties; the first is an indifference to the location of features
within the patched image, as the same kernel is used across the full patch. Secondly, CNNs are forced
to efficiently encode their input, which means that they can incorporate large scale structure, but their
convolution steps mean that small scale detail can also be preserved.

Architectures are presented in standard diagrams (Fig. 5,6,7, Igbal (2018)). Colour coding is used

10
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Figure 5: The FCN-8 architecture. (Igbal, 2018; Long et al., 2015).

to indicate layer type. As well as the convolution layers, indicated in light orange, max pool layers
are indicated in dark orange. These layers downsample the convolved results to reduce the spatial
information, but preserve the channel depth created by multi-channel convolution. Blue layers represent
upsampling, conducted by choosing nearest neighbours in the low resolution grid. Arrows with
right angles represent concatenation, where full encodings from earlier layers are passed to later ones,
whereas curved arrows represent passing indices. Finally, purple represents the activation function,
converting the arbritrary numbers produced by these operations into a probability of one class or another.
The down-sampling stages of a model are known as the ‘encoder’, and the up-sampling sections, the
"decoder”.
Several model architectures were used in this work and compared.

2.4.1 FCN-8

Fazekas et al. (2017) used the seminal model developed by Long et al. (2015), the Fully Convolutional
Model (FCN-8, Fig. 5). This model was a pioneer in convolutional neural networks, as it demonstrated
empirically that there was no need for fully connected layers as in previous work, which had simple
weights between layers. This intuition was developed by the fact that in most segmentation tasks, it
does not matter where in the image the pattern appears, it still should be selected. It notably includes
two skips, which allow it to concatenate early embeddings from the convolution of a high resolution
image with late data from the pooling.

It esssentially takes the backbone of the pre-existing VGG16 (Simonyan & Zisserman, 2015) model
and then applies pooling and upsampling including previous skips to generate a full size model. There
is no convolution in the upsampling half of the model, which means that the model is not able to perform
spatial agnostic modification on the post-bottleneck encoding of the image. The pre-training makes the
fine-tuning of the model slower, as it has a prior understanding of edges and shapes that is not specific
to our dataset.

On small datasets, it takes a large number of epochs to converge to a solution, as the number of
down-convolution steps have many trainable parameters. (Badrinarayanan et al., 2015; Yang, 2024).

2.4.2 U-Net

Ronneberger et al. (2015) developed the U-net architecture for biomedical segmentation tasks. It im-
proves on the FCN by replacing the simple pooling in the upsampling half of the network with convo-
lutional layers. Additionally, rather than only 2 skips, the U-net concatenates every layers encoding into
the corresponding upsampling layer.

It has improved performance on small datasets, as it can encode more complex features in the
upsampling. It tends to be more compuationally expensive, and has faced some criticism for being
unable to generalise to many types of images. (Neha et al., 2024). Due to the constraints of this
report, the overlap tile strategy proposed by Ronneberger et al. (2015) was not used, rather, just the
convolutional architecture. Tht tiling method may have allowed the convolution to generalise to larger
features, especially those across patches (Sec. 5.1.3).
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Figure 6: U-Net 32 architecture. (Igbal, 2018; Ronneberger et al., 2015).
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Figure 7: SegNet architecture. (Badrinarayanan et al., 2015; Igbal, 2018).

2.4.3 SegNet

SegNet iterates on the U-Net architecture by removing the transfer of full feature maps from encoder
to decoder section, which uses large amounts of memory and contributes to the computational expense
of running the model. Instead, the maxpooling layers pass the indices from which the pooled values
are taken to the upsampling layer. This suggests a symmetric process of encoding and decoding, so
the spatial understanding of ‘'where’ the encoding is can be passed. SegNet, like FCN uses the VGG
pre-trained convolution layers, but forgoes the skips, and instead adds convolution in a U-Net fashion
to the decoder section. (Badrinarayanan et al., 2015). The variant SegNet-Basic was implemented for
this work, as it is the most memory efficient but shares the same architecture and provides reasonable
performance, only reducing the number of encoders and decoders by one. As our image sizes are small,
this will likely not affect accuracy.

2.4.4 Activation Function

To convert the model outputs from the arbritrarily scaled logits produced by the model to a binary mask,
we need to convert the logits to a probability. Fazekas et al. (2017) developed their model architecture
to output a single logit value (One vs All), which can be more efficient when the number of samples
of one class is limited (Rifkin & Klautau, 2004). By converting the task to a ‘'multi-class’ architecture,
the model now outputs logits which are related to the confidence that a given pixel is a class. We can
therefore forego introducing thresholding at this step, and instead simply use the maximum of the two
class outputs. This is a commonly used technique for binary segmentation (Minaee et al., 2020), and
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Figure 8: Plot of the mean colour values for all core sections in our dataset over CIELAB
space. Means of the two main clusters are shown. Histograms show distribution of mean
colour values.

removes an assumption of bimodal classes.
To convert logits to probability, we used the softmax activation function, defined in Eq. 6.
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where z is the logits output from the model, and K is the number of classes.

2.5 Data Augmentation

In order to increase the size of our labelled dataset, a number of augmentation transformations were
applied to labelled patches when used in training. Two types of colour transforms were trialed over the
data in the CIELAB space.

The Gaussian (GN) augmentation applies a random colour shift across the whole patch, selected from
a normal distribution with a standard deviation of a fraction of the standard deviation of the colour
channel.For GN augmentation, the number after indicates the noise fraction. For example, (GNO.5)
indicates the standard deviation of the noise is 0.5 of the noise in the full dataset. This simulates extra
data which was collected with the same structure but is a slightly different colour; as colour varies
downcore, this may allow the model to generalise more easily.

The Cluster Switching (CS) method relies on an interpretation of the colour data. As the colour
data is roughly bimodal (Fig 8), CS computes the nearest cluster, then shifts the colour until the mean
is in the same relative location to the other cluster mean. This makes the assumption that the two
clusters are similar in distribution, which roughly holds for our dataset. Augmenting in this way aims
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to allow disturbance encodings learnt on one cluster to be applied to the other. This method is novel,
and generates data with the most similar colour to the rest of the set. The two clusters are mostly
distingushable by redness.

Random vertical flip (RF) was also applied in some model runs. Horizontal flip was not used as
the direction of gravity/drilling is important for the shape of some features. Rotation was not applied
for similar reasons of directionality. Models which have had augmentation applied are indicating by
appending the name of the augmentation strategy. When the augmentations were applied, each time an
image was selected, there was a 50% chance of applying the augmentation. This means that the model
was trained on a different set of augmented images each time, in the aim of increasing model generality.

2.6 Training

Loss was measured during training using the cross entropy loss due to its trivial differentiability, as is
common in segmentation tasks (Badrinarayanan et al., 2015; Ronneberger et al., 2015). The cross entropy

loss is measured as in Eq. 7.
N
1
CEL = — Z '

i=1j

C
yijlog(7ij) )

=1

where N is the number of samples, C is the number of classes, y;; is the true label for sample i and class

Jj,and 7;; is the predicted probability for sample i and class ;.

Since validation loss does not require differentiability, we can use the more easily interpreted
Intersection-Over-Union (IOU) metric, also known as the Jaccard Metric, defined simply as the ratio
between the intersection of the predictions and ground truth labels and their union, without double
counting the intersection (Eq. 8) (Jaccard, 1901).

yny

IOU = —=
yvy

®)

where v is the true labelled disturbance, and # is predicted disturbance by the model

The corresponding IOU Loss is defined as the negative of the IOU, and can be plotted alongside the
CEL to evaluate model convergence and overfitting (Sec. 3.1). In cases where background removal is
applied, we define two metrics, the Patch-IOU, which is the mean of the IOU over all of the patches in
the test set, and the Image-IOU, which also averages over all of the removed patches by background
removal, treating all of them as having an IOU of the background removal accuracy. This provides a
comparable metric to the model IOUs from models where no background removal was applied.

Accuracy was also measured, defined as the ratio of correctly predicted pixels to the total number of
pixels.

Training was conducted using a learning rate of 0.001, using the commonly used optimiser Adam
(Kingma & Ba, 2015). A test train split of 0.6/0.4 was chosen. In order to better update the model,
the full training set was iterated through several times. Each full iteration through the training set is
known as an “epoch’ (Blarr et al., 2024; Long et al., 2015; Ronneberger et al., 2015). Most model runs
were conducted to 3 epochs, as in this time, the models quickly decreased in loss, enabling us to see
indicative results of the modifications applied. Since data augmentation mostly combats overfitting, the
model runs with various augmentations were run for 20 epochs so we could obtain a plot of validation
and training loss over time.

2.7 Post-Processing

The reference composite of Hodell et al. (2015) was used to stitch the full depth colour record, calibrated
based on Ca/Ti ratio from XRF data and manually spliced. This makes the assumption that there was
no stretch or squeeze, and that the surface colour data ties at the same point as the XRF; not always true
in the presence of bioturbated surface features.

When averaging over the predicted cores for the generation of colour data, averages were only taken
of rows in which at least 90% of the pixels remained. This number could be tested more robustly, but
it was chosen as a good qualitiative threshold, as if only a few pixels were not considered disturbance,
they would have an outsize impact on the colour average, producing extra peaks/noise in the record.
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2.8 Implementation

The models, training code and pre-processing, were implemented using the python pyTorch (Paszke et
al., 2019) library for CNNs, which allows more control over model architecture than other libraries, and
is faster to execute than Tensorflow /Keras for small models (Novac et al., 2022). Training was conducted
on a single CUDA enabled NVIDIA GeForce 1650Ti with 4GB of vRAM. For the purposes of this report,
all models were rewritten based on their architecture description so that they were implemented together
using the same framework for more accurate comparison.
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Figure 9: Segmentation on a representative core section (339_U1385A_01H_01). Epochs
were chosen by peak performance, as tabulated in Tables 2 and 4.

3 Results

The models generated from our small labelled dataset was applied to the full unlabelled set of cores,
and data generated from applying the model to the full composite section of Hodell et al. (2015) is given
in Sec. 3.5. Model evaluation was done with the labelled dataset. In later subsections, representative
core sections are shown, but training and validation was always done on the full set of labelled core
sections.

3.1 Model Architecture

A number of training runs with various architecture and parameters were conducted to produce the
best model (Table 2). To determine the optimal model architecture, we trained each model for three
epochs to see the initial response and the compute time required for training.

All models decreased in loss over time, indicating that the optimiser and learning rate were appro-
priate. SegNet was both the fastest model to train, and produced the best IOU performance. UNet was
slightly more accurate; this suggests that UNet produces more false positives. The lower batch sizes
due to memory requirements seemed a major influence on the model training time. Qualitiatively, it
seems FCNB8 did not have time to adapt to our training set (Fig 9). It segments some of the more obvious
edges, which is likely thanks to the VGG backbone pre-training, but fails to encode anything further
than that. In the core section chosen for Fig 9, it seems that both UNet and SegNet are able to segment
most large cracks and voids, but struggle with the bioturbation features. SegNet is more convincingly
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Architecture | Accuracy (%) Patch-IOU | Training Time (min:sec) Batch Size

FCNS8 83.59 0.0099 + 0.0041 42:03 5
UNet 93.06 0.1697 £ 0.032 29:08 8
SegNet 92.15 0.2203 + 0.021 15:34 16

Table 2: Comparison of model architectures. All models were trained with the same
parameters of 5x5 kernel for 3 epochs. Batch size was adjusted to fit the model within
vRAM. Errors presented are the standard deviation of the IOU on the test set.

able to remove the soupy section near the coretop. In this section, SegNet segments more of the core
than UNet, but UNet is more easily able to segment the narrow scrapes, likely due to being able to pass
high resolution encodings.

3.2 Background Removal

SegNet, as the most efficient, was used to evaluate whether background removal improved the model
IOU. To see the biggest difference, 128x128 patches with a 3x3 kernel were used. This was chosen to
maximise performance on background regions, as the model should not need to recognise large features.
The model was trained for 3 epochs. Without background removal, the model IOU was 0.420 + 0.007;
using only the cropped dataset, the model outputs an IOU of 0.195 + 0.013; expected, as we’ve removed
a lot of the "easy’ to predict segments. Using the corrected Image-IOU, this becomes 0.456 + 0.013.
Errors reported are the standard error over 3 trials. These values are significantly different; background
removal does improve model performance.

Patch-IOU Scores
Background Removal | Trial 1 Trial2 Trial 3 | Mean Patch-IOU Mean Image-IOU
None 0.409 0418 0432 0.420 + 0.007 0.420 + 0.007
With 0212 0205 0.169 0.195 + 0.013 0.456 + 0.013

Table 3: Comparison of model performance with and without background removal. The
model was trained for 3 epochs on 128x128 patches with a 3x3 kernel. Errors reported are
the standard error across the three trials.

3.3 Data Augmentation

Four models, one without augmentation, and one with each of the three augmentation models were
run for 20 epochs to see their effectiveness.

Augmentations  Peak Epoch | CEL  Accuracy(%)  Patch-IOU Image-IOU | Training Time (h:min:sec)

None 9 0.269 92.3 0.226 + 0.076  0.526 + 0.076 5:34:12
GNO.1 2 0.435 91.8 0.229 +0.077  0.528 + 0.077 5:27:09
(@3] 7 0.306 91.6 0.237 +0.089  0.533 + 0.089 5:46:44
RF 3 0.379 83.3 0.232 + 0.066  0.529 + 0.066 5:34:50

Table 4: Epoch selection was done according to Fig. 10. Full image IOU was calculated as
in Sec. 2.6. Augmentation strategies are in Sec. 4.2.3. CEL is the training loss. Errors are
standard deviation of the IOU across the test-set at the given epoch.

Differences between models trained on augmented data are not significant, though the shape of
the training curve indicates different degrees of overfitting (Fig. 10, Sec. 4.3.2). Overall, the Cluster
Switching model performed slightly better at its peak.

The training and validation loss (CEL and IOU Loss) are shown per epoch in Fig. 10. The model
with no augmentation, as expected, fits well for 10 epochs, and then begins to overfit; the validation
loss increases while training loss continues to decrease. Cluster switching (CS) augmentation seems
to slow overfitting slightly but introduces more error into the IOU calculation. Random flips increases
the validation noise slightly, as does the gaussian noise augmentation. Overfitting seems to be reached
similarly fast with RF, whereas GN slows overfitting significantly.
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Figure 10: Training Loss and Test IOU Loss for different augmentation methods. Standard
deviation is of the patch-wise IOU over the test set for one epoch of one model run.
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Figure 11: Visualisation of confidence down a core section. Confidence is defined as the
probability of a pixel being undisturbed.

3.4 Confidence Maps

By applying the softmax activation function, we can obtain a map of how confident the model is that a
given pixel is undisturbed (Fig 11). It is obvious that the model is more confident in large cracks and
voids, and less confident in smaller features. Different confidence levels could be chosen for filtering
the record (Sec 2.4.4). We also show the absolute error, (i.e. the absolute value of the label - confidence).
The majority of errors are at the edge of disturbance features and outside of the patched area.

3.5 Filtered Colour Record

The best performing model from above, SegNet+CS was used to generate a full colour record versus
depth on the composite section of Hodell et al. (2015).

In the full composite section (Fig. 12), the broad shape trends are the same as in the spectrophotometer
record, and a number of sharp points are visible in both records. Errors in the unfiltered section are
greatly reduced by the filtering, and all extreme artifacts are removed. The mean is roughly simlar across
the whole timescale. Detailed analysis of this full record was not carried out due to the constraints of
this report.

3.6 Qualitative Comparison

Two core sections, U1385-A-01H-01 and U1385-A-13H-04 were chosen to view the model performance.
A-01H-01 contains a number of cracks and voids, whereas A-13H-04 shows significant evidence of
bioturbation.

Qualitatively, the model performs better on cracked sections, and sections of the redder sediment
type. It is generally able to remove most voids and lithological accessories, as well as oxidation artifacts
and some scrapes and scratches. Segmented images do have significant gaps in them; 23.8% and 25.8%
of the image is segmented away. In Figure 13, large obvious cracks and voids are trivially removed, but
there are also less obvious changes in the lightness record. Specifically highlighted in 01H-01 are dark
spots from oxidation, deep gouges and scrapes, reflections from scrapes. There is a clear Thallasonoides
burrow at 30cm downcore which is not segmented, and further burrows at 91cm.

In 13H-4, there is significantly more bioturbation, and it is notably worse segmented. Some burrows,
such as the Planolites at 50cm and 144cm are selected, other burrows at 90cm, 120cm, 132c¢m and 138cm
are well selected as well. Notably though, the light colour sediment at the top of the section is not well
segmented, especially the Planolites and others from 0-42cm. This is likely as the training data does not
contain a large amount of burrows in this lighter sediment.

There’s more randomness and noise in the segmentation mask on 13H-4, which lines up with the
higher probability of disturbance in cores that look heavily bioturbated, but the lack of specific masking
across the whole core indicates this model is not perfectly tuned to select bioturbation. Highlighted
panels in this figure indicate regions with well segmented larger burrows.
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Figure 12: Unfiltered and filtered digital image record in L*, plotted against a reference
depth section. Gap at 55m is due to missing core in the image dataset available. Spec-
trophotometer record is taken directly from Hodell et al. (2015). Standard deviation in the
deviation of the values averaged cross-core at each point.
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Figure 13: L" lightness records from two core sections. Grey highlight shows regions where
segmentation has changed the shape thanks to smaller disturbances.
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4 Discussion

4.1 Method Usage & Generality

In this work we present a significantly improved method for automatically processing full cores. The
developed coreclean package for python contains a full suite of scripts useable for this pipeline. All steps
in this process are core, length and resolution agnostic, so segmentation and colour record generation
can now be conducted much more quickly. Additionally, this method is implemented in pyTorch, is
trivially deployable on cloud services and is extensible; the package serves as a starting point for further
experimentation with CNN and algorithmic processing of core images in the quest for higher resolution
of climate records.

4.2 Model Performance

Compared to the work of Fazekas et al. (2017), we produce a significantly higher IOU score of 0.53+0.08,
and are able to train and segment full core sections much more quickly than the architecture used. The
IOU score we receive is likely higher thanks to the relative ease of segmentation when the background
of the core image is so large, as well as due to some architectural improvements. Our dataset of 256x256
images is smaller (4364 compared to 9993), and our training time of less than 5 hours per model is less
than the previously reported 10 hours. Either our model is better at generalising quickly from small
datasets or the U1385 cores are more easily segmented. Both of these factors may be true; the SegNet
architecture was certainly more appropriate for our task based on the results in Tab. 2, though the
background of our image was larger; meaning that it is easy to gain a boost to performance by applying
background removal.

The model qualitiatively selects most of the drilling disturbance, lithological accessories, voids and
dark spots, especially where colour is significantly different. Bioturbation is less well segmented, likely
because of the limited labelling in the dataset, though in some cases burrows are well removed.

4.2.1 Background Removal

Background removal was found to significantly improve model performance, as the model was able to
use more of its parameters in encoding subtler information rather than just the background. This is
likely more effective on our dataset due to the large backgrounds, as opposed to the work of Fazekas et al.
(2017), where only a small ruler was present in the raw images. Our background removal technique,
though it can require tuning to the exact shape of the core, is completely algorithmic and generalisable,
and can automate 97.6% of core labelling (Tab. 1).

It is telling that the most significant improvement in model performance was not from the CNN
itself, but instead from a simple algorithmic pre-processing step. Steps should be taken to ensure
that we are not overcomplicating problems in image processing, as algorithmic methods are often less
computationally intensive, and more prone to detectable and explainable errors.

4.2.2 Architecture

SegNet was chosen as the best performing model based on two factors. The first, computation time,
in which the UNet and FCN model was significantly slower to train, because of the larger number of
parameters and passing full maxpool layers through the model. Further, the choice of lower batch size
thanks to the large memory requirements of both other models meant that the training was even slower
than it could have been otherwise. Even so, both other models had worse performance after 3 epochs;
likely because the dataset was small, and those models contain many parameters due to their high
encoder depth, that they were not able to reach convergence with the data available. The pre-trained
backbone of FCN is known to make it less receptive to small datasets (Yang, 2024).

4.2.3 Data Augmentation

As is visible in table 4, there is no significant improvement with data augmentation.

The random shift (GN) augmentation likely did not improve model performance as the average
colour data in each patch is similar to any other, and even the validation set does not contain colours
very far outside of the original model. Adding too much of this augmentation (i.e. a noise with standard
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Figure 14: Three errors in the model. Panels a and b are taken from the error plot in Fig.
11. Panel ¢ shows a masked image from a 128x128 SegNet model run for 20 epochs with
kernel size 3.

deviation of 0.5 the between section standard deviation), causes a significant decrease in IOU, as we
overwrite any information to do with colour variations in the model.

Random flip (RF) augmentation did not significantly improve model performance, though it is a
commonly applied CNN augmentation. There are several possible reasons for this; one is that there is
an asymmetry in the dataset, maybe ascribable to scraping direction or to lighting variations across the
core. More likely, the patching process has an asymmetry due to the requirements for square patches
of 128x128 or 256x256, which cuts off the bottom of the core. It’s likely then, that the most disturbed
sediment at the edge of the core is more present in the dataset at the top, and randomly flipping this
does not make the model perform better in removing this. Suggested improvements to the patching
process (Sec. 5.1.3), might mean that this augmentation becomes more useful.

Cluster switching (CS) augmentation was not found to significantly improve model performance
either. One explanation possible for this is that the there is a difference in disturbance expression
between colour clusters; i.e. the lighter sediment has more clear bioturbation (as organics generally
leave a darker colour). This method did produce the model with the highest IOU score, so future work
should investigate whether it does improve model fit when there is more labelled data available.

4.3 Model Limitations
4.3.1 Patching Artifacts

The process of patching the images into smaller sections for training and evaluation introduces some
errors. Firstly, disturbance which spans multiple patches, especially when the sections in each patch are
small (or do not have a distinctive shape), are generally not identified by the model (Fig. 14 (a)).

Once restitched, especially after more training epochs, often the edge of each patch is mispredicted.
This is likely due to the implicit padding of 0 needed to be able to convolve a kernel over the patch.
This specifically affects the power spectrum of the restitched image, providing an artifact signal with a
wavelength of the patch length. This may be mitigated by more sophisiticated padding types; specifically,
a reflection padding or even padding by taking originally overlapping patches (Section 5.1.3).

4.3.2 Overfitting

In figure 10, after roughly 10-12 epochs, all but the GN model began to overfit. This is indicated by
the validation loss increasing while the training loss continues to decrease. This indicates the model
is recognising patterns unique to the training set, which is very possible with the large number of
parameters in the model compared to our small dataset.

To demonstrate the structure of an overfit model, when a 128x128 patch model was left running for
20 epochs, overfitting selected seemingly random pixels which happened to minimise the loss on the
training set, but had no relation to the generalisable structure of the image and disturbance. This is
shown in figure 14 (c).
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Our model has a significant problem with overfitting, beginning to reach this stage after only a few
epochs, which meant that further training became useless. This is due to the small size of the labelled
dataset, and its lack of variety. Most of the cores from the labelled set come from the top half of the
section; and 9 of 12 demonstrate low levels of bioturbation. For improved peformance on this, generation
of a larger dataset so that training can contain more complexity for the model is reccommended, but
better tuning of data augmentation may also be able to supplement this.

4.4 Implications for Future Sampling
4.4.1 Taking Core Images

Historically, core sections have been photographed for reference and visual description only, rather than
for the collection of high resolution colour data. As has been done before (Nederbragt et al., 2006; Wu
etal., 2022), and is done in this work, we now have the ability to produce a high resolution colour record
limited only by the resolution and quality of the photographs taken. It is important for an undisturbed
record that such photographs be taken as quickly as possible after cuting the core, as dehydration and
exposure to the air provokes more disturbance in the form of cracking and oxidation of the sediment,
but many of the segmented disturbances, specifically scrapes, are introduced by core preparation. To
improve the resolution and amount of data in these digital image colour records, we suggest that it is
possible to scrape the surface of the cores without leaving gouges (Nederbragt et al., 2006), as these
produce sharp peaks in the unfiltered colour record (Figs. 12, 13). In order to combat the impact of
reflections which were present in many of our core images, it’s important that lighting should be diffuse
and that as much as surface water as possible is removed from the core surface; a drying process with
warm air could be investigated to improve this quality.

4.5 Implications for Resolution of Colour Records

Qualitatively, all models seem to under-predict disturbance in core sections (Fig. 14, b), likely due to the
small amount of labelled data. In the above figure, and in Fig. 11, most disturbances have a light rim,
where the model has discarded less of the core than the human labeller. There are two interpretations
for this; the first, is that the model has identified the feature and since it is labelling pixelwise, it can be
more precise with the boundary; alternatively, the model is more confident when the kernel is within
the sharp line in the center of the feature or fully covers the feature. Any distance greater than the kernel
from an obvious disturbance is unable to be selected, and so it leaves slightly modified sediment away
from the most obvious part of the feature.

Additionally, in Fig. 13, we can see that a number of bioturbational features are not segmented
by the model, this is further underprediction. Despite this, our best SegNet-8 model already discards
26.6% of the core across the full composite, and leaves many gaps in the full record. This seems to
suggest if colour data is to be used for robust climate predictions, more duplicate sections should be
taken and combined, and more sophisiticated modelling strategies should be used to combine several
core sections.

Comparing this data to the justification for higher spectrophotometer resolution proposed by Chap-
man & Shackleton (1998), we apply differenced cross correlation to two core sections (Fig. 15, which can
show us the information content lost by offsetting the record by small lags. The cross correlation was
calculated between each half of the core, and differencing was applied to highlight changes.

Figure 15 shows that the cross correlation increases slightly for the segmented record. This suggests
that the model is removing some smoothed noise, but this effect is small. When looking at the differenced
cross-correlation, there is an increase in cross-correlation across all lags, which shows that we are
removing distinctive features that are not similar to any other part of the core; the disturbance related
features, especially the bioturbation features, (in 13H-4), were what caused the core sections to be
less self-similar. The peak at 0 lag is visible in both sections, and it sharply drops off in 01H-1,
suggesting a resolution of approx. lcm is still present, but in the more bioturbated section (13-H-4),
after segmentation, the peak is much less pronounced and wide. Most of the resolution here has been
destroyed by the burrowing, and the high cross-correlation in the unfiltered section was only recording
the position of the burrows themselves. At least in some sections, aiming for resolutions of greater than
1-2cm is impossible with a naive approach of segmentation.
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Figure 15: Cross correlation of two core sections, with and without differencing.
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5 Conclusions

5.1 Future Work
5.1.1 Downsampling

One notable time optimisation which was not implemented within the scope of this report is the
downsampling of patches for training and evaluation, and the application of the lower resolution mask
generated to the full resolution core images. This would lower the training and usage demands of the
CNN models, while sacrificing very little as the boundaries of most disturbances are not defined at pixel
scale.

5.1.2 Alternative Augmentation

Data augmentation with small rotations could provide some improvement as most core disturbances
can appear with small rotational offsets; technically, this is not possible while maintaining the maximum
resolution during model training as it would require sub-pixel sampling; if downsampling was added,
this would become feasible, as spatial transforms could be applied to the high resolution image and
then downsampling would have more information to pull from.

5.1.3 Patching Improvements

Patching limits the maximum disturbance structure scale detectable by the model, specifically, the
encoding of what the model sees as disturbance is only considered at a scale of a patch. This means
that large scale disturbances, especially those that are similar in colour but have recognisable structures,
are much harder to detect by our model. To combat this, a repeated structure such as presented by
Ronneberger et al. (2015), where the patches are cropped too large by at least the kernel size and then
fed to the model mean that the convolution structure could be applied seamlessly across the core.

Additional patching improvements could be made in the full core stitches; currently, non-full patches
are discarded, which leaves small unpredicted lines across the bottom and at the end of the core. By
cropping to integer multiples of the patch size only, or by selecting more of the image and then discarding
extra patches in a post-processing step, we could improve model performance. Mirror padding could
also help simply to avoid some patching errors.

5.1.4 Dataset Generation

As always with machine learning, the model can be improved by increasing the size and quality of the
dataset. Further time could be invested in labelling these cores. There may be merit in following the
work of Dorador & Rodriguez-Tovar (2018) and applying an additional colour thresholding procedure,
and creating a rigorous dataset algorithmically on one set of cores. Data augmentation could then be
applied to this dataset, to help generalise to more cores. Rather than manually labelling a dataset, if a
simulated colour record could be generated from XRF or other data, training could be conducted against
a true “Ground Truth” dataset, which would reduce the errors and time involved in labelling, as well as
producing more robust metrics of model accuracy.

5.1.5 Ensemble Methods

With more time and compute available, the data augmentation strategies proposed and trialed could be
rigorously compared for improvement, as without more model runs, the errors in IOU score can only
be for a specific model training run. Almost all of the results of this report are simply indicative, and
require a number more models to be trained for us to construct rigorous error bars on the efficacy of
this technique.

5.1.6 Bayesian & Process Modelling

In ice core science, dating of proxy records is now commonly performed using the Paleochrono package
(Parrenin et al., 2024), which uses a probabilistic model to correct tie points and establish chronologies.
It also allows us to correlate records to remove gaps; which is ideal for sediment records, as the disturbed
areas create gaps, especially in high resolution records. Similar probabilistic tools should be used to
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correlate the chronology and colour record from U1385, and could be combined with segmentation tools
to produce a complete, high resolution record of colour.

Process modelling could help correlate different records, and address the more complicated question
of where bioturbated material is sourced from, rather than simply segmenting it away.

5.1.7 Architecture Improvements

There are two different types of limitation of CNN based image processing. The first is the need for
larger scale understanding of features. 5x5 kernels have been an improvement on 3x3 kernels Fazekas
et al. (2017). This suggests that there are features with more spatial complexity than our model can
recognise. Some of this can be solved by improved model structure, for example state of the art image
segmentation often contains attention mechanisms and uses a transformer structure; obviously this
requires large datasets and significant training time, but could produce better performance. A pre-
trained large segmentation transformer model such as Meta’s Segment Anything Model (SAM) (Kirillov
et al., 2023) could be a solution to decrease training time, but it likely will not have strong accuracy to
this problem without significant extra training, and cannot be hosted or run locally.

The problem of XAI (Explainable Al) is more structural (Neha et al., 2024). In sedimentology, the
scientific validity of this method may be questioned as there is no explanation. Models of this type may
begin to overpredict disturbance, as was the case for Fazekas et al. (2017). In this case, it becomes possible
to generate a record that seemingly reduces the noise of colour signal, but discards valuable variation in
the colour which contains information about past climate. Algorithmic checks and human verification
is probably needed before machine-learning methods are applied to the generation of authoritative
climate records.

5.2 Final Summary

In this report we have shown that colour reflectance data can be generated from digital images of cores,
and that the record can be improved by the application of CNN based segmentation techniques. For
low-compute applications and small datasets, we found that SegNet provides a more accurate and more
well segmented result than FCN8 or UNet architectures, though this result is only indicative and may
not be statistically significant if a large ensemble analysis is run. Background removal by morphological
methods was found to significantly increase the IOU of our models based on 3 trials across the full
labelled dataset of Iberian Margin core images. Three methods for data augmentation were trialed;
two common, colour shifting and image flipping augmentations and one novel tactic which relies on
the two main clusters of colours in the core sections within our dataset. None of these produced a
significant improvement in model performance. Our most successful model, SegNet+CS, implemented
the cluster switching data-augmentation strategy and obtained an IOU score of 0.53 + 0.08, which is an
improvement on previous work by Fazekas et al. (2017), though this may be due to increased simplicity
of background features in the dataset available for this work.

Qualitatively, this model was able to segment all drilling disturbance features and many other types
of disturbance, but was not as consistent with bioturbation. Despite selecting some burrows accurately,
a larger dataset is recommended for future training of models to improve the performance on more
complex colour-agnostic features.

Our model segments 26.6% of the composite section, and likely underpredicts the disturbance in core
sections. Despite this, cross-correlation analysis suggests that much of the resolution is no longer present
in the section, which indicates that resolution higher than 1-2cm is likely destroyed by bioturbation,
reflections and scrapes in some parts of the records. Itis likely possible with an improved labelled dataset
to segment more disturbance more accurately, and produce complete records of moderate resolution
from parallel cores.
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A Dependencies

The code was run in a conda environment with the following dependencies:
Package Version Package Version
asttokens 3.0.0 blinker 1.9.0
Cartopy 0.24.1 certifi 2025.4.26
charset-normalizer 3.4.2 click 8.1.8
comm 0.2.2 contourpy 1.3.1
cycler 0.12.1 debugpy 1.8.11
decorator 511 executing 2.1.0
filelock 3.16.1 Flask 3.1.0
fonttools 4.55.8 fsspec 2024.12.0
graphviz 0.20.3 idna 3.10
imagecodecs 2025.3.30 | imageio 2.37.0
ipykernel 6.29.5 ipython 8.31.0
itsdangerous 2.2.0 jedi 0.19.2
Jinja2 3.15 joblib 1.5.0
jupyter_client 8.6.3 jupyter_core 572
kiwisolver 1.4.8 largestinteriorrectangle 0.2.1
lazy_loader 0.4 lightning-utilities 0.12.0
[lvmlite 0.44.0 MarkupSafe 3.02
matplotlib 3.10.0 matplotlib-inline 0.1.7
mpmath 1.3.0 natsort 8.4.0
nest-asyncio 1.6.0 networkx 342
numba 0.61.0 numpy 213
nvidia-cublas-cul2 12.45.8 nvidia-cuda-cupti-cul2 12.4.127
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Sam Hutton QCES Part III Project

B Code

Full code for the model pipeline is available in this GitHub repository. The code is licensed under the
MIT license.
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